148 research outputs found

    Designing a Method to Nudge Analytics with Artificially Generated Data

    Get PDF
    Recent advances to machine learning (ML) and its rapid proliferation spur the wide-spread development of advanced analytics applications. Nonetheless, the capabilities of (ML) can be stalled due to limited or missing data. In this regard, the production of artificial data offers a promising solution. However, its full potential is yet to be unleashed since it\u27s frequently misunderstood or overseen. We attribute this to a lack of practical guidance on when and how to employ artificially generated data. Against this backdrop, we draw on two streams—namely, method engineering and design science to develop GenFlow , a novel method useful to practitioners as well as researchers. The utility is demonstrated in retrospect for previous work and empirically accessed for the context of employee attrition

    Bicriteria Aggregation of Polygons via Graph Cuts

    Get PDF
    We present a new method for the task of detecting groups of polygons in a given geographic data set and computing a representative polygon for each group. This task is relevant in map generalization where the aim is to derive a less detailed map from a given map. Following a classical approach, we define the output polygons by merging the input polygons with a set of triangles that we select from a constrained Delaunay triangulation of the input polygons\u27 exterior. The innovation of our method is to compute the selection of triangles by solving a bicriteria optimization problem. While on the one hand we aim at minimizing the total area of the outputs polygons, we aim on the other hand at minimizing their total perimeter. We combine these two objectives in a weighted sum and study two computational problems that naturally arise. In the first problem, the parameter that balances the two objectives is fixed and the aim is to compute a single optimal solution. In the second problem, the aim is to compute a set containing an optimal solution for every possible value of the parameter. We present efficient algorithms for these problems based on computing a minimum cut in an appropriately defined graph. Moreover, we show how the result set of the second problem can be approximated with few solutions. In an experimental evaluation, we finally show that the method is able to derive settlement areas from building footprints that are similar to reference solutions

    The genetic factors of bilaterian evolution

    Get PDF
    The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship

    Differential var Gene Expression in Children with Malaria and Antidromic Effects on Host Gene Expression

    Get PDF
    Among 62 children with mild malaria, cerebral malaria, or severe malarial anemia, we analyzed the transcription of different var gene types. There was no difference in parasitemia level or body temperature between groups. However, a significantly different expression pattern was observed in children with cerebral malaria, compared with that in patients in the other 2 groups: children with cerebral malaria had lower expression of the upsA subtype but higher expression of the upsB and upsC subtypes. Furthermore, expression of human genes responsive to tumor necrosis factor and hypoxia correlated with distinct ups type

    The spin-flip phenomenon in supermassive black hole binary mergers

    Get PDF
    Massive merging black holes will be the primary sources of powerful gravitational waves at low frequency, and will permit to test general relativity with candidate galaxies close to a binary black hole merger. In this paper we identify the typical mass ratio of the two black holes but then show that the distance when gravitational radiation becomes the dominant dissipative effect (over dynamical friction) does not depend on the mass ratio. However the dynamical evolution in the gravitational wave emission regime does. For the typical range of mass ratios the final stage of the merger is preceded by a rapid precession and a subsequent spin-flip of the main black hole. This already occurs in the inspiral phase, therefore can be described analytically by post-Newtonian techniques. We then identify the radio galaxies with a super-disk as those in which the rapidly precessing jet produces effectively a powerful wind, entraining the environmental gas to produce the appearance of a thick disk. These specific galaxies are thus candidates for a merger of two black holes to happen in the astronomically near future.Comment: v3: 36 pages, 1 figure; discussion on the validity of the model and estimates for the angular value of the spin-flip added to Section 5; v4: minor changes, 2 new references, published versio
    corecore